14 research outputs found

    Multiple timescale encoding of slowly varying whisker stimulus envelope in cortical and thalamic neurons in vivo

    Get PDF
    7 p., 5 figures and referencesAdaptive processes over many timescales endow neurons with sensitivity to stimulus changes over a similarly wide range of scales. Although spike timing of single neurons can precisely signal rapid fluctuations in their inputs, the mean firing rate can convey information about slower-varying properties of the stimulus. Here, we investigate the firing rate response to a slowly varying envelope of whisker motion in two processing stages of the rat vibrissa pathway. The whiskers of anesthetized rats were moved through a noise trajectory with an amplitude that was sinusoidally modulated at one of several frequencies. In thalamic neurons, we found that the rate response to the stimulus envelope was also sinusoidal, with an approximately frequency-independent phase advance with respect to the input. Responses in cortex were similar but with a phase shift that was about three times larger, consistent with a larger amount of rate adaptation. These response properties can be described as a linear transformation of the input for which a single parameter quantifies the phase shift as well as the degree of adaptation. These results are reproduced by a model of adapting neurons connected by synapses with short-term plasticity, showing that the observed linear response and phase lead can be built up from a network that includes a sequence of nonlinear adapting elements. Our study elucidates how slowly varying envelope information under passive stimulation is preserved and transformed through the vibrissa processing pathway.This work was supported by the following: International Human Frontier Science Program Organization shortterm fellowship (B.N.L.); Spanish Ministry of Science and Innovation Grant BFU2008-03017/BFI (M.M.), cofunded by the European Regional Development Fund; CONSOLIDER Grant CSD2007-00023; European Commission Coordination Action ENINET, Contract LSHM-CT-2005-19063; and a McKnight Scholar Award in the Neurosciences (A.L.F.)Peer reviewe

    The role of precuneus and left inferior frontal cortex during source memory episodic retrieval

    Get PDF
    The posterior medial parietal cortex and left prefrontal cortex (PFC) have both been implicated in the recollection of past episodes. In a previous study, we found the posterior precuneus and left lateral inferior frontal cortex to be activated during episodic source memory retrieval. This study further examines the role of posterior precuneal and left prefrontal activation during episodic source memory retrieval using a similar source memory paradigm but with longer latency between encoding and retrieval. Our results suggest that both the precuneus and the left inferior PFC are important for regeneration of rich episodic contextual associations and that the precuneus activates in tandem with the left inferior PFC during correct source retrieval. Further, results suggest that the left ventro-lateral frontal region/ frontal operculum is involved in searching for task-relevant information (BA 47) and subsequent monitoring or scrutiny (BA 44/45) while regions in the dorsal inferior frontal cortex are important for information selection (BA 45/46). (C) 2005 Elsevier Inc. All rights reserved.NIGMS NIH HHS [2 T32 GM 07266]info:eu-repo/semantics/publishedVersio

    Hierarchical Event Descriptor library schema for EEG data annotation

    Full text link
    Standardizing terminology to describe electrophysiological events can improve both clinical care and computational research. Sharing data enriched by such standardized terminology can support advances in neuroscientific data exploration, from single-subject to mega-analysis. Machine readability of electrophysiological event annotations is essential for performing such analyses efficiently across software tools and packages. Hierarchical Event Descriptors (HED) provide a framework for describing events in neuroscience experiments. HED library schemas extend the standard HED schema vocabulary to include specialized vocabularies, such as standardized clinical terms for electrophysiological events. The Standardized Computer-based Organized Reporting of EEG (SCORE) defines terms for annotating EEG events, including artifacts. This study makes SCORE machine-readable by incorporating it into a HED library schema. We demonstrate the use of the HED-SCORE library schema to annotate events in example EEG data stored in Brain Imaging Data Structure (BIDS) format. Clinicians and researchers worldwide can now use the HED-SCORE library schema to annotate and then compute on electrophysiological data obtained from the human brain.Comment: 22 pages, 5 figure

    Intrinsic gain modulation and adaptive neural coding

    Get PDF
    In many cases, the computation of a neural system can be reduced to a receptive field, or a set of linear filters, and a thresholding function, or gain curve, which determines the firing probability; this is known as a linear/nonlinear model. In some forms of sensory adaptation, these linear filters and gain curve adjust very rapidly to changes in the variance of a randomly varying driving input. An apparently similar but previously unrelated issue is the observation of gain control by background noise in cortical neurons: the slope of the firing rate vs current (f-I) curve changes with the variance of background random input. Here, we show a direct correspondence between these two observations by relating variance-dependent changes in the gain of f-I curves to characteristics of the changing empirical linear/nonlinear model obtained by sampling. In the case that the underlying system is fixed, we derive relationships relating the change of the gain with respect to both mean and variance with the receptive fields derived from reverse correlation on a white noise stimulus. Using two conductance-based model neurons that display distinct gain modulation properties through a simple change in parameters, we show that coding properties of both these models quantitatively satisfy the predicted relationships. Our results describe how both variance-dependent gain modulation and adaptive neural computation result from intrinsic nonlinearity.Comment: 24 pages, 4 figures, 1 supporting informatio

    Neural adaptation and fractional dynamics as a window to underlying neural excitability.

    No full text
    The relationship between macroscale electrophysiological recordings and the dynamics of underlying neural activity remains unclear. We have previously shown that low frequency EEG activity (<1 Hz) is decreased at the seizure onset zone (SOZ), while higher frequency activity (1-50 Hz) is increased. These changes result in power spectral densities (PSDs) with flattened slopes near the SOZ, which are assumed to be areas of increased excitability. We wanted to understand possible mechanisms underlying PSD changes in brain regions of increased excitability. We hypothesized that these observations are consistent with changes in adaptation within the neural circuit. We developed a theoretical framework and tested the effect of adaptation mechanisms, such as spike frequency adaptation and synaptic depression, on excitability and PSDs using filter-based neural mass models and conductance-based models. We compared the contribution of single timescale adaptation and multiple timescale adaptation. We found that adaptation with multiple timescales alters the PSDs. Multiple timescales of adaptation can approximate fractional dynamics, a form of calculus related to power laws, history dependence, and non-integer order derivatives. Coupled with input changes, these dynamics changed circuit responses in unexpected ways. Increased input without synaptic depression increases broadband power. However, increased input with synaptic depression may decrease power. The effects of adaptation were most pronounced for low frequency activity (< 1Hz). Increased input combined with a loss of adaptation yielded reduced low frequency activity and increased higher frequency activity, consistent with clinical EEG observations from SOZs. Spike frequency adaptation and synaptic depression, two forms of multiple timescale adaptation, affect low frequency EEG and the slope of PSDs. These neural mechanisms may underlie changes in EEG activity near the SOZ and relate to neural hyperexcitability. Neural adaptation may be evident in macroscale electrophysiological recordings and provide a window to understanding neural circuit excitability

    A Review of Neurostimulation for Epilepsy in Pediatrics

    No full text
    Neurostimulation for epilepsy refers to the application of electricity to affect the central nervous system, with the goal of reducing seizure frequency and severity. We review the available evidence for the use of neurostimulation to treat pediatric epilepsy, including vagus nerve stimulation (VNS), responsive neurostimulation (RNS), deep brain stimulation (DBS), chronic subthreshold cortical stimulation (CSCS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). We consider possible mechanisms of action and safety concerns, and we propose a methodology for selecting between available options. In general, we find neurostimulation is safe and effective, although any high quality evidence applying neurostimulation to pediatrics is lacking. Further research is needed to understand neuromodulatory systems, and to identify biomarkers of response in order to establish optimal stimulation paradigms
    corecore